

Winch – ворот Rotor – колесо вращения Винчротор – вращение ротора воротом.

ВИНЧРОТОРНЫЕ УСТРОЙСТВА используют сравнительно простой принцип эффективной механической взаимосвязи вращательного и поступательного движения без кривошипношатунного механизма, и могут использоваться в качестве перекачивающего насоса, гидро- и пневмо-привода, двигателя внутреннего сгорания, имеют патентную защиту. (патент № RU 2541059).

ВИНЧРОТОРНЫЙ НАСОС НОВАЯ КОНСТРУКЦИЯ, НОВЫЕ ВОЗМОЖНОСТИ

Оригинальность конструкции насоса заключается в отсутствии пружин, впускных и выпускных клапанов. Устойчивое перемещение пластин происходит благодаря оригинальной конструкции пазов в статоре и роторе насоса.

Насос сохраняет работоспособность на малых и средних оборотах, что позволяет также перекачивать густые, вязкие жидкости (нефть, масла, мазут и т.д.) и двухфазные среды (газжидкость).

В таблице указаны сравнительные характеристики насосов разных типов:

Параметры	Поршневой*	Центробежный одноступепенчатый	Осевой	Шестренный	Роторный	врон
Производительность Q, м3/ч	1-200	1-100 000	100-100 000	1-6	1-300	1-100 000
Напор Н, м	10-10 000	1-450	1-20	1-200	1-30	1-1 000
Количество оборотов N об, мин	1-200	1 000-10 000	1 000-10 000	1-5 000	1-2 000	1-500

Производительность Q винчроторного объемного насоса (ВРОН) определяется суммарным внутреннем объёмом V насоса и частотой вращения ротора N, а напор H напрямую зависит от крутящего момента M подключенного привода.

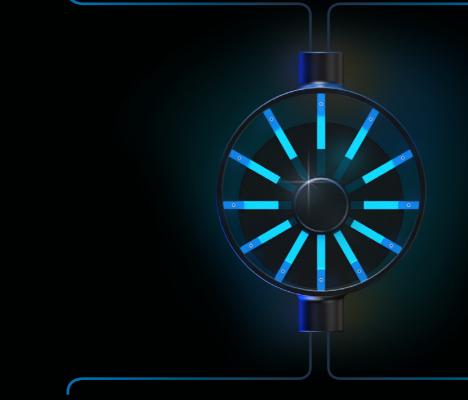
^{*} Для поршневых насосов N= числу двойного хода поршня

ВИНЧРОТОРНЫЙ НАСОС СРАВНЕНИЕ ПАРАМЕТРОВ ПОРШНЕВОГО и ВРОН

Для сопоставления основных рабочих характеристик экспериментального макета ВРОН выбран электроприводной поршневой насос ЭНП 100.

Параметры	эпн	ВРОН макет	ВРОН расчетный
Производительность, Q, л/сек (м3/4)	27,8 (100)	1,6 (6)	30
Число оборотов трансмиссионного вала, N, об/мин. при скорости поршня 100 двойных ходов/мин.; об/мин. для ВРОН	390	280	360
Давление на выходе из насоса, Н, МПа (кгс/см2)	0,63 (6,3)	0,12 (1,2)	1 (10)
Внутренний объем насоса, V, см3	5 086	290	5 000
Мощность электродвигателя, кВт	30	0,18	5
Масса, кг, не более	2 500	12	100
Габаритные размеры, мм, не более: длина ширина высота	2 324 1 185 1 902	800 300 300	1 000 500 500

В таблице - экспериментальные и расчётные параметры ВРОН, приведённые к параметрам ЭНП 100.


ВИНЧРОТОРНЫЕ НАСОСЫ НОВОЙ КОНСТРУКЦИИ ПРЕИМУЩЕСТВА

ТРАНСПОРТИРОВКА НЕФТЕПРОДУКТОВ

Высокопроизводительные насосы для перекачивание больших объемов нефти, мазута, масел, при малых энергетических затратах.

МЧС, СТРОИТЕЛЬСТВО, ДОМАШНИЕ ХОЗЯЙСТВА

Высокопроизводительные насосы малой мощности для подачи и откачки воды. Ручные малогабаритные, высокопроизводительные насосы одноразового использования.

ХИМИЧЕСКАЯ, ПИЩЕВАЯ ПРОМЫШЛЕННОСТЬ

Перемещение больших объёмов агрессивных, сыпучих и вязких сред.

ТРАНСПОРТ

Топливные, масляные и другие насосы.

ОСНОВНЫЕ ПРЕИМУЩЕСТВА:

- Перекачивание больших объемов жидкостей при малых оборотах.
- Перекачивание больших объемов смешанных сред (вода-газ-нефть) и густых жидкостей при сравнительно малых прилагаемых усилиях.
- Отсутствие кавитационных явлений.
- Простой реверсный режим.

Экспериментальный макет насоса имеет внутренний объём камер 290 см3, диаметр патрубков 24 мм, при испытаниях показал следующие характеристики:

- при ручном режиме работы 3,5 оборота в секунду (примерно 210 об/мин.), производительность составила 60 литров в минуту или 3600 литров в час.
- при применении электрического мотор редуктора с мощностью двигателя 180 Вт и крутящим моментом на валу насоса 12 Нм. и с частотой вращения вала 300 об/мин. производительность насоса составила 87 литров в минуту или 5200 литров в час.

При применении используемого в эксперименте привода макета (180 Вт, 12Нм, 300 об/мин.) расчётные характеристики ВРОН для простого перекачивания воды:

- с увеличением объема камер насоса в три раза до 1000 см3. производительность ВРОН вырастет в три раза и составит примерно 18 000 литров в час.
- увеличение объема камеры насоса ВРОН в 17 раз, до 5000 см3., увеличит производительность перекачки в 17 раз, примерно до 90 000 литров в час.

Напор ВРОН зависит от приложенного крутящего момента на вал насоса. Незначительное увеличение мощности и крутящего момента привода требуется для обеспечения пуска и выхода на рабочий режим.

Авторы предлагают стратегическое партнёрство в разработке конструкторской документации, производстве и сбыте серии винчроторных насосов новой конструкции.

На первом этапе требуются инвестиции для создания и испытания серии промышленных образцов насосов с различными расчетными рабочими характеристиками для потенциальных потребителей в определённых областях применения.

Команда проекта:

Авторы изобретения Сергей Филиппов и Алексей Козко, патент № RU 2541059. 3D моделирование и математический расчёт Андрей Ошуев , Иван Югов. Менеджер проекта Владимир Ядыкин.

